Identification of the dITP- and XTP-hydrolyzing protein from Escherichia coli.
نویسندگان
چکیده
A hypothetical 21.0 kDa protein (ORF O197) from Escherichia coli K-12 was cloned, purified, and characterized. The protein sequence of ORF O197 (termed EcO197) shares a 33.5% identity with that of a novel NTPase from Methanococcus jannaschii. The EcO197 protein was purified using Ni-NTA affinity chromatography, protease digestion, and gel filtration column. It hydrolyzed nucleoside triphosphates with an O6 atom-containing purine base to nucleoside monophosphate and pyrophosphate. The EcO197 protein had a strong preference for deoxyinosine triphosphate (dITP) and xanthosine triphosphate (XTP), while it had little activity in the standard nucleoside triphosphates (dATP, dCTP, dGTP, and dTTP). These aberrant nucleotides can be produced by oxidative deamination from purine nucleotides in cells; they are potentially mutagenic. The mutation protection mechanisms are caused by the incorporation into DNA of unwelcome nucleotides that are formed spontaneously. The EcO197 protein may function to eliminate specifically damaged purine nucleotide that contains the 6-keto group. This protein appears to be the first eubacterial dITP- and XTPhydrolyzing enzyme that has been identified.
منابع مشابه
Biochemical characterization of a novel hypoxanthine/xanthine dNTP pyrophosphatase from Methanococcus jannaschii.
A novel dNTP pyrophosphatase, Mj0226 from Methanococcus jannaschii, which catalyzes the hydrolysis of nucleoside triphosphates to the monophosphate and PPi, has been characterized. Mj0226 protein catalyzes hydrolysis of two major substrates, dITP and XTP, suggesting that the 6-keto group of hypoxanthine and xanthine is critical for interaction with the protein. Under optimal reaction conditions...
متن کاملCharacterisation of multiple substrate-specific (d)ITP/(d)XTPase and modelling of deaminated purine nucleotide metabolism.
Accumulation of modified nucleotides is defective to various cellular processes, especially those involving DNA and RNA. To be viable, organisms possess a number of (deoxy)nucleotide phosphohydrolases, which hydrolyze these nucleotides removing them from the active NTP and dNTP pools. Deamination of purine bases can result in accumulation of such nucleotides as ITP, dITP, XTP and dXTP. E. coli ...
متن کاملIsolation and expression of recombinant viral protein (VP2) from Iranian isolates of Infectious Pancreatic Necrosis Virus (IPNV) in Escherichia coli
Infectious Pancreatic Necrosis Virus (IPNV) is a member of the family Birnaviridae that has been linked to high mortalities in salmonids. Bacterial based systems as live vectors for the delivery of heterologous antigens offer a number of advantages as vaccination strategies. VP2 is a structural viral protein of IPNV with immunogenicity effects. In this study IPNV was isolated from diseased fry ...
متن کاملCloning and evaluation of gene expression and purification of gene encoding recombinant protein containing binding subunit of coli surface antigens CS1 and CS2 from Enterotoxigenic Escherichia coli
Background & Objective: Enterotoxigenic Escherichia coli (ETEC) is a major causative agent of diarrhea. Enterotoxins and the colonization factors (CFs) are major virulence factors in ETEC infections. The bacterium binds to the intestinal epithelial cell surface through colonization factors and produces enterotoxins that cause excessive fluid and electrolyte secretion in the lumen of the intesti...
متن کاملIdentification of β-Lactamase-Negative-Ampicillin Resistance Strains of Escherichia coli in 150 Isolates from Urinary Tract Infection and Fecal Flora in Kerman
β-lactamases are enzymes which inactivate the β-lactam antibacterial agents and are one of the major causes of resistance against these drugs. Recently there are reports on the isolation of bacteria which does not produce β-lactamase, but are resistant to penicillins. In the present study, β-laclamase production was determined using iodometric method on 150 ampicillin resistance Escherichia col...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biochemistry and molecular biology
دوره 35 4 شماره
صفحات -
تاریخ انتشار 2002